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1 Introduction

In this note, we investigate a little-appreciated feature of the classical black hole geometry

that distinguishes extremal black holes from their near-extremal cousins. In addition to

the black hole solutions, it has long been known that in Einstein-Maxwell theory with or

without a cosmological constant, it is possible to find static solutions that are the product

of maximally symmetric spaces [1–3]. If the background cosmological constant is zero,

the relevant solution takes the form of AdS2 × S2, two-dimensional anti-de Sitter times

a two-sphere of constant radius. These “compactification solutions” differ from the black

hole solutions by boundary conditions.

Beginning with a non-extremal black hole and considering the limit of extremality, it

was noted by [4] that the standard static coordinate system becomes pathological. Sur-

prisingly, the region between degenerating horizons remains of constant four-volume as

the limit is taken. In this note we will review how this region, together with a region

just outside the horizon, forms the compactification solution. Considering regions a finite

proper distance away from the horizon, and then taking the limit, one obtains an extremal

black hole. Thus, even at the level of classical geometry, the extremal limit is discontin-

uous. Subtleties in the limit can be important in general. In this note we focus on the

implications for the entropy of extremal Reissner-Nordström black holes.

Black holes have long been an important theoretical laboratory for exploring the nature

of quantum gravity. The fact that black holes radiate [5] and exhibit a formal similarity to

thermodynamical systems [6–8] leads to the association of a Bekenstein-Hawking entropy

to the black hole, proportional to the area of its event horizon [5, 9]. While there has been

great success in reproducing the Bekenstein-Hawking entropy formula using a variety of

methods (see e.g. [10]), the theory of black hole entropy is still incomplete.

One apparent inconsistency seems to arise when considering extremal black holes using

semiclassical methods [11], which seem to indicate the extremal black holes have vanishing
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entropy even when the area of the event horizon is non-zero [12, 13].1 However, it is exactly

in the extremal cases that string theory microstate counting was first used to calculate a

non-zero entropy [17], matching what is expected from the Bekenstein-Hawking formula

(see e.g. [18, 19] for reviews).

A third way to determine the black-hole entropy, complementary to semiclassical tech-

niques and string-theory microstate counting, may be referred to as “dual microstate count-

ing.” Central to this approach is the observation that the near-horizon geometry of an ex-

tremal black hole is locally that of two-dimensional anti-de Sitter space cross a two sphere.

The symmetries of this geometry define a conformal field theory (CFT), the entropy of

which can be determined and associated with the black hole [20]. This method does not

rely on supersymmetry, makes no reference to string theory, and has recently been applied

to charged, spinning black holes in four and higher dimensions [21–23].

The fundamental reason for the discrepancy between the string theory and dual mi-

crostate counting results and the semiclassical calculation remains elusive, largely because

of a lack of precise overlap between the semiclassical and string theory methods; see [18, 24–

30] for possible resolutions. The semiclassical calculations attempt to infer information

about the microphysics from the classical geometry, while the string theory methods at-

tempt to infer something about the classical geometry from the microphysics.

We suggest the above observation about the discontinuous nature of the extremal

limit might allow us to shed some light on the issue of black hole entropy discussed above.

Since the limit includes the AdS solution as well as the extremal black hole, the additional

space might account for the net entropy. The dual microstate counting calculation relies

on a holographic dual picture on the horizon and does not make explicit reference to the

full black hole geometry. Taking into account both of the classical solutions in the limit

also yields the correct entropy, but the the origin of the AdS space in this picture is

quite different, comprising a portion of the non-extremal spacetime in the extremal limit

as opposed to the dual near-horizon region of an extremal black hole extended to a full

AdS space.

In section 2, we describe the black hole solutions, and in section 3 we carefully examine

the limiting procedure. In section 4 we verify that the spacetimes we are considering,

Reissner-Nordström and AdS2 × S2, are the only static, spherically symmetric solutions

of the Einstein-Maxwell system. We conclude by discussing possible implications of the

discontinuous extremal limit for questions of black hole entropy in section 5.

2 Black hole and compactification solutions

In this section we consider the properties of four-dimensional, static, spherically symmetric

solutions to the Einstein-Maxwell system with zero cosmological constant (in units where

1Extremal black holes are distinguished from non-extremal black holes at the classical level as well —

they cannot be produced by a process involving any finite number of steps without violating the weak

energy condition [8]. (Modes of formation might also account for the entropy [14], see also [15].) This

is in accord with the view that extremal black holes are to be thought of as solitons, which are typically

expected to be formed only quantum mechanically by pair production (and whose entropy one expects to

vanish) [16].
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G = 1),

S =
1

16π

∫

d4x
√−g

(

R− F 2

4

)

. (2.1)

One set of solutions is the Reissner-Nordström black hole, with metric

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

2 (2.2)

and field strength

F =
Qe

r2
dt ∧ dr +Qm sin θdθ ∧ dφ. (2.3)

This set of coordinates does not cover the entire manifold, and there are event horizons

located at the coordinate singularities

r± = M ±
√

M2 −Q2, (2.4)

where we have defined

Q ≡
√

Q2
e +Q2

m (2.5)

(which we take to always be positive). Exactly at extremality, where M = Q, the event

horizons coincide at the extremal radius:

ρ ≡ r+ = r− = M = Q. (2.6)

For masses less than this, the spacetime possesses a naked timelike singularity; we will not

consider such solutions. The extremal black hole metric is given by

ds2 = −(r − ρ)2

r2
dt2 +

r2

(r − ρ)2
dr2 + r2dΩ2

2. (2.7)

The causal structure of the (extremal and non-extremal) Reissner-Nordström black

hole is shown in figure 1 (along with that of anti-de Sitter space). There are three different

types of patches, labeled as follows:

Region I : r+ < r <∞, −∞ < t <∞
Region II : r− < r < r+, −∞ < t <∞
Region III : 0 < r < r−, −∞ < t <∞ .

(2.8)

The metric eq. 2.2 will cover each region separately. Note that in Region II between the

horizons, it is r rather than t that plays the role of a timelike coordinate, and the geometry

is that of a homogeneous space with geometry R×S2. The spherical part of the geometry

contracts monotonically in “time” (from r+ to r−) while the R part expands from zero

“scale factor” and then re-contracts to zero.

Another set of solutions to the same Einstein-Maxwell system is the product of a

maximally extended AdS2 and a stabilized sphere S2 of the same radius ρ. The metric

ds2 =
ρ2

cos2 θ

(

−dτ2 + dθ2
)

+ ρ2dΩ2
2, (2.9)
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with

ρ = Q, (2.10)

covers the entire manifold, with the coordinate ranges −π
2
≤ θ ≤ π

2
and −∞ ≤ τ ≤ ∞.

These are the compactification solutions. Note that AdS2 has two causally separate timelike

boundaries at θ = ±π/2. The full causal structure of the AdS2 quotient is shown in figure 1.

Both the extremal black holes and compactification solutions can be specified by the

set of charges {Qe, Qm} since, from the extremality condition, the mass M of the extremal

black hole is no longer an independent parameter. The two types of solutions are distin-

guished by the imposed boundary conditions on the two-sphere (as we discuss in more

detail in section 4); the charges alone (together with the assumption that the solution is

static and possesses spherical symmetry) are not sufficient to specify the global properties

of the solution.

However, there is a sense in which the extremal and compactification solutions are

locally equivalent in the near-horizon limit. Changing the spacelike radial coordinate in

eq. 2.7 to

λ =
r − ρ

ρ
, (2.11)

the metric becomes

ds2 = − λ2

(1 + λ)2
dt2 +

(1 + λ)2

λ2
dλ2 + ρ2 (1 + λ)2 dΩ2

2. (2.12)

A peculiar property of the extremal metric is that the proper distance along a t = const.

slice from any point λ to the horizon at λ0 → 0 is logarithmically divergent

∫ λ

λ0

dλ
1 + λ

λ
= λ− λ0 + log

(

λ

λ0

)

. (2.13)

Taking the near-horizon limit of the extremal black hole, λ→ 0, the metric becomes

ds2 = −λ2dt2 +
ρ2

λ2
dλ2 + ρ2dΩ2

2, (2.14)

which can be recognized as AdS2 × S2 after transforming to the coordinates in eq. 2.9

t =
ρ sin τ

cos τ − sin θ
, λ =

cos τ − sin θ

cos θ
. (2.15)

From this relation, it can be seen that the horizon at λ = 0 is identified with θ = ±τ +π/2.

This is highlighted in figure 1 by the red hatched line. The extremal solution has regions

near the horizon that locally approximate AdS2×S2, but the approximation becomes exact

only at the location of the horizon, which is an infinite proper distance from any point in

the exterior of the black hole.
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Figure 1. The causal structure of the AdS2 space (left), non-extremal Reissner Nordström black

hole (center), and the extremal Reissner Nordström black hole (right). The non-extremal black hole

possesses two event horizons at r = r+ and r = r−, while the extremal black hole possesses only

one at r = ρ. The solid lines in Region II of the non-extremal black hole are timelike trajectories of

constant ψ (see eq. 3.2) extending from r+ to r−. The horizon of the extremal black hole solution

indicated by the hatched red line is locally equivalent to the hatched red line of the AdS2 diagram.

3 The extremal limit

It is possible to obtain both the extremal black hole and compactification solutions by

taking various limits of a non-extremal black hole. We will work at the level of the fully

extended classical geometry, and will consider Regions I–III in turn.

We begin with Region II of the non-extremal solution where r− < r < r+ (r is a timelike

coordinate in this region). In the limit of extremality r± → ρ, it would appear that this

region is continuously diminished to zero size. However, because the metric coefficients

diverge on either side of the range in r, this need not be true. Following refs. [4, 31–33],

we can see this more clearly by defining

r− = ρ− ǫ, r+ = ρ+ ǫ, (3.1)

so that ρ = Q is the value of r to which the two horizons evolve, while ǫ =
√

M2 −Q2

parameterizes the deviation from extremality. In the following, we will hold ρ fixed, while

varying ǫ. Then we can define a new timelike coordinate χ and spacelike coordinate ψ via

r = ρ− ǫ cosχ, ψ =
ǫ

ρ2
t. (3.2)

These coordinates allow us to zoom in on the near-horizon region. They range over 0 <

χ < π and −∞ < ψ < ∞, and the horizons become degenerate in the limit where ǫ → 0.
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The metric is given by

ds2 = ρ2






−

(

1 − ǫ

ρ
cosχ

)2

dχ2 +
sin2 χ

(

1 − ǫ
ρ

cosχ
)2
dψ2 +

(

1 − ǫ

ρ
cosχ

)2

dΩ2
2






. (3.3)

We first consider what happens to the spacetime volume of Region II as we approach

extremality. To investigate this, we consider the spacetime distance between the inner

and outer event horizons. This is equivalent to the proper time elapsed on a trajectory

of constant finite ψ (such trajectories are shown in figure 1) between 0 < χ < π. (If

we fix one point on a spacelike hypersurface, the distance from that point to some other

hypersurface is determined by a curve of maximum proper time; in the present context it is

straightforward to verify that a curve of constant finite ψ satisfies this criterion, and that

the result is independent of the initial point chosen.) This proper time is given by

∆τ = ρ

∫ π

0

dχ

(

1 − ǫ

ρ
cosχ

)

= πρ. (3.4)

Remarkably, this is independent of ǫ, the deviation from extremality. So, even in the limit

where the radii of the horizons become coincident, Region II between them does not vanish;

the inner and outer event horizons remain a constant physical distance apart.

Taking the limit ǫ→ 0, the metric of Region II becomes

ds2 = ρ2
[

−dχ2 + sin2 χdψ2 + dΩ2
2

]

, (3.5)

which is a portion of AdS2 × S2 with a sphere of constant radius ρ. The portion of the

AdS2 that is covered can be determined by going to the global coordinates of eq. (2.9),

cosχ =
cos τ

cos θ
, tanhψ =

sin θ

sin τ
. (3.6)

Over the full range in {χ,ψ}, Region II of the AdS2 in figure 1 is filled out.

Note that we obtained this portion of AdS2×S2 as the extremal limit was approached

by starting from Region II, in between the inner and outer horizons. This region is separated

from the asymptotic boundary conditions at spatial infinity of the black hole solution, and

the “black-hole-ness” disappears entirely from this solution at the extremal point.

We now turn to Region I, where the choice of different spacetime regions and asymp-

totic boundary conditions will play a role. A new set of coordinates can be introduced that

cover all of Region I,

r− = ρ− ǫ, r+ = ρ+ ǫ, r = ρ+ ǫ coshχ, ψ =
ǫ

ρ2
t. (3.7)

Here χ = 0 at r = r+ and χ = ∞ at future/past null infinity, and −∞ < ψ < ∞. The

metric in these coordinates is

ds2 = ρ2






− sinh2 χ

(

1 + ǫ
ρ

coshχ
)2
dψ2 +

(

1 +
ǫ

ρ
coshχ

)2

dχ2 +

(

1 +
ǫ

ρ
coshχ

)2

dΩ2
2






. (3.8)
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Because coshχ can grow large enough at χ → ∞ to compensate for ǫ → 0 in eq. 3.7,

it is important to establish the spacetime location of interest before taking the extremal

limit. If χ is set to a fixed finite value and then ǫ is sent to zero, we are effectively taking

the near-horizon and extremal limit simultaneously since from eq. 3.7, r → ρ. However, if

we fix r 6= ρ, and then send ǫ→ 0 (with χ becoming commensurately large), we are taking

only the extremal limit. The near horizon limit discussed in section 2 is taken after ǫ = 0,

in the exactly extremal geometry.

For fixed finite χ and ǫ→ 0 the metric approaches

ds2 = ρ2
[

− sinh2 χdψ2 + dχ2 + dΩ2
2

]

. (3.9)

This describes a piece of AdS2 × S2. The coordinate transformation to the global AdS2

coordinates is in this case

coshχ =
cos τ

cos θ
, tanhψ =

sin τ

sin θ
, (3.10)

where Region I of the AdS2 space in figure 1 is filled out over the full range in {χ,ψ}.
Performing a similar limiting procedure in Region III of the non-extremal black hole so-

lution, Region III of the AdS solution (together with the timelike boundary) is produced.

Combining these patches with the patch covered by eq. 3.5, the fully extended AdS solution

is generated in the limit, with the timelike boundary arising from the portions of Regions I

and III just outside/inside of the horizon.

If we look at fixed finite r 6= ρ, then clearly the coordinates eq. 3.7 become inappropriate

at ǫ = 0. In this case, it is more appropriate to use the original {t, r} coordinates of eq. 2.2.

Taking the limit where r+ = r−, we obtain the extremal black hole metric eq. 2.7, which

covers Region I of the extremal black hole solution in figure 1. A similar procedure can

be applied to Region III, which yields the interior of the extremal black hole. These two

patches, at extremality, provide a global cover of the extremal black hole solution.

In the extremal black hole geometry, it can be shown that the past and future event

horizons never intersect [34]. In the non-extremal black hole geometry, there is an intersec-

tion occurring at χ = 0. Taking ǫ→ 0 at finite χ, this intersection is preserved, and by the

limiting procedure described above, becomes part of the AdS2 × S2 space. Therefore, it is

clear that the non-extremal black hole exterior does in fact have two regions that become

distinctly different spacetimes in the limit of extremality.

In figure 2 we depict the limiting process. In the center panel is the non-extremal black

hole. For a black hole near extremality (r+ ∼ ρ), if we choose a fixed radius r = r∗ near the

outer horizon in Region I (indicated by the dashed lines), this will correspond to a fixed

value of χ∗ ∼ log [(r∗ − ρ) /ǫ] from the relation eq. 3.7. We can also define an equivalent

fixed radius inside of Region III. In the light shaded portions of the non-extremal black hole

solution bounded by these radii, the radius of the S2 will be approximately constant, and

the metric will locally approximate the light shaded portion of the AdS2 ×S2 space shown

in the left panel. Fixing r∗ and taking ǫ smaller, the value of χ∗ will increase, as indicated

by the arrows in the left panel. If we take r∗ → ρ as ǫ→ 0, we recover a timelike boundary

of the AdS solution (rendering the {χ,ψ} coordinates ill-defined outside of the black hole,

– 7 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
9

Figure 2. A pictorial representation of the limiting procedure. The AdS2 × S2 space (left) and

extremal black hole (right) can be obtained from different regions of the non-extremal black hole

(center). For fixed constant r∗ ∼ ρ (dashed lines in the non-extremal black hole diagram), regions

with smaller r (the light shaded portions of the diagram comprising Region II and portions of

Regions I and III) are approximated close to extremality by the corresponding light shaded regions

of the AdS2×S2 diagram. These interfaces approach the timelike boundaries of the AdS2×S2 space

when extremality is approached (ǫ→ 0), as indicated by the arrows. The dark shaded regions on the

non-extremal black hole diagram are approximated close to extremality by the corresponding dark

shaded regions on the extremal black hole diagram. As extremality is approached, the extremal

black hole approximation applies closer and closer to the horizon (as indicated by the arrows).

as described above). Including Regions II and III, the global AdS2 × S2 compactification

solution is obtained.

Shown in the right panel of figure 2 is the extremal solution. Close to extremality, the

portions of the non-extremal black hole outside of r∗ will approximate the extremal solution

more closely than the compactification solution, since the size of the S2 will nowhere

be approximately constant. The dark shaded region of the non-extremal black hole will

map onto the dark shaded regions of the extremal solution in figure 2. As extremality

is approached, this region will grow, as indicated by the arrows, until at ǫ = 0, the full

extremal black hole is obtained.

So, we have seen that in the extremal limit, Region II and the near-vicinity of the

horizon in Regions I and III of the non-extremal black hole become the compactification

solution, while the portions of Region I and III any finite distance away from the horizon

form the extremal black hole. In Regions I and III, it is important to distinguish the order

of near-horizon and extremal limits to determine if a portion of the extremal black hole or

a portion of the compactification solution is reached at extremality (ǫ = 0 exactly).

– 8 –
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The discussion above generalizes to arbitrary dimension for the Einstein-Maxwell sys-

tem with a (D−2)-form field strength, and to the case where there is a non-zero cosmological

constant. Adding a non-zero positive cosmological constant changes the horizon structure

of the solutions, since for a range of charges, there will be a cosmological horizon in addition

to the inner and outer black hole event horizons. With non zero cosmological constant,

two compactification solutions can be generated by the same limiting procedure of degen-

erating horizons described above, where a portion of dS2 × SD−2 space is formed between

degenerating outer black hole and cosmological horizons, and a portion of AdS2 × SD−2

space is formed between degenerating inner and outer black hole horizons.

4 Uniqueness

According to the black hole uniqueness theorems [35, 36], the Reissner-Nordström solution

is the unique spherically symmetric, asymptotically flat, static (where static is defined with

respect to the asymptotically flat region) solution to the Einstein-Maxwell equations. It

is clear that if we drop the assumption of asymptotic flatness, another solution is allowed:

the compactification solution AdS2 × S2, which has different boundary conditions. In

this section we verify that this is the only new solution that arises upon dropping the

assumption of asymptotic flatness.

Assuming only that the spacetime is spherically symmetric and possesses a static

region, the metric can be written as

ds2 = −A(z)2dt2 + dz2 + r(z)2dΩ2
2. (4.1)

This is fully general, although these coordinates will typically only cover some portion of

the full solution. The components of the Einstein tensor are

Gtt = −A
2

r2

(

r′
2
+ 2rr′′ − 1

)

(4.2)

Gzz =
1

Ar2

(

2rA′r′ +Ar′
2 −A

)

(4.3)

Gθθ =
r

A

(

A′r′ + rA′′ +Ar′′
)

(4.4)

Gφφ = sin2 θGθθ, (4.5)

while the components of the energy-momentum tensor for the field strength eq. 2.3 are

given by

Ttt = A2 Q2

8πr4
(4.6)

Tzz = − 1

A2
Ttt (4.7)

Tθθ =
r2

A2
Ttt (4.8)

Tφφ =
r2 sin2 θ

A2
Ttt. (4.9)

– 9 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
9

We will first look for static solutions where r′ = r′′ = 0 for all z. From the tt and zz

Einstein equation, we obtain the constant value of r,

r20 = ρ2. (4.10)

From the θθ and φφ equations, we obtain an equation for A(z),

A′′ =
1

ρ2
A. (4.11)

Choosing A(0) = 0, A′(0) = ρ−1 yields

A(z) = sinh(z/ρ), (4.12)

and the metric eq. 4.1 can be recognized as a rescaled version of the portion of AdS2 × S2

covered by eq. 3.9. It is possible to analytically continue z → iz, and extend the coordinates

across z = 0 where A = 0 to the portion of AdS2 × S2 covered by eq. 3.5. Continuing to

extend the coordinates across points where A = 0 in each region, yields global AdS2 × S2,

and thus the entire compactification solution.

We now look for solutions where r is a function of z. Combining the tt and zz Einstein

equations, we ascertain that

A = r′. (4.13)

From the tt Einstein equation, we obtain an equation of motion for R

r′′ +
r′2

2r
=

1

2r

(

1 − Q2

r2

)

= −dVeff

dr
, (4.14)

where Veff is defined as

Veff = −Q2

4r2
− 1

2
log r. (4.15)

This effective potential is sketched in figure 3.

The equation of motion eq. 4.14 is equivalent to a one dimensional particle moving in

the potential eq. 4.15 subject to friction. There will be four qualitatively different types

of trajectories, depending on the “energy” of the particle and the imposed boundary con-

ditions: constant, bound, unbound, and monotonic. (A similar effective potential analysis

was performed in [37] for a different class of black holes). Constant trajectories sit at crit-

ical points of the effective potential. Bound and unbound trajectories have turning points,

with r ranging between the turning point and r = 0 or r → ∞ respectively. Monotonic

trajectories encompass the entire range in r from 0 < r <∞.

The constant trajectories sit at the maximum of the effective potential over the entire

range in z, and are equivalent to the solutions found above with r′ = r′′ = 0. Bound

trajectories have their turning points to the left of the maximum of the effective potential,

and unbound trajectories to the right. The bound and unbound trajectories obtained by

evolving eq. 4.14 are uniquely determined by these turning points r(0), where r′(0) = 0,

and from eq. 4.13, A(0) = 0. Defining a(r) = r′2, and changing coordinates from z to r,

the metric reduces to the static form of eq. 2.2. The metric coefficient a(r) goes to zero

– 10 –
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Figure 3. The effective potential eq. 4.15. There is a solution that sits precisely at the maximum,

corresponding to AdS2 × S2. All other solutions correspond to some part of the RN spacetime;

energies higher than the maximum of Veff are super-extremal, equal to the maximum are extremal,

and below the maximum are sub-extremal. The sub-extremal region between the horizons at r+
and r− corresponds to motion in an inverted potential between two turning points.

when r′ = 0, indicating that turning points in the motion correspond to the location of

event horizons. Also, note that the mass parameter has not yet explicitly appeared in our

analysis — this will be determined by the turning points, since there is a one-to-one map

between the horizon structure and the mass parameter for fixed charge. Taking z → iz,

regions where the spacelike and timelike coordinates switch are produced. All solutions to

the equations of motion are oscillatory, since r now evolves in the inverted potential, with

the amplitude of oscillations specified by the turning point.

The full non-extremal black hole solutions can be produced by the procedure depicted

in figure 3. First, choose a turning point to the right of the maximum, and evolve using the

boundary conditions specified above to produce Region I. Starting from the same turning

point, analytically continue z → iz, and evolve the Euclidean equations of motion to the

second turning point (which will be to the left of the potential maximum) to produce

Region II. Analytically continuing back to a spacelike z coordinate, evolve the equations

of motion from the second turning point to r = 0, producing Region III. The extremal

solution, which has no regions where z is timelike, corresponds to the trajectory that

grazes the top of the effective potential, reaching the maximum only after an infinite span

of z. This is the property of infinite proper distance to the horizon in the extremal geometry

noted in section 2. The monotonic trajectories have no turning points, and therefore no

horizons, corresponding to the black hole geometries with Q2 > M2.

Thus, we see that the only new solution introduced by relaxing the requirement of

asymptotic flatness in the uniqueness theorems is the compactification solution, the con-

stant trajectory with r′′ = r′ = 0.

5 The entropy of extremal black holes

The Einstein-Maxwell system gives rise to two static, spherically symmetric solutions de-

scribed by the same set of conserved charges, but with different boundary conditions: the
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compactification solution and the extremal black hole. Either of these two solutions can be

obtained from different parts of the non-extremal black hole (which is the unique solution

specified by a mass and set of charges) using the limiting procedure described in section 3.

Thus, even at the level of classical geometry, there are subtleties in interpreting the limit

of extremality. As we discussed in section 1, semi-classical methods yield zero entropy for

extremal black holes, while dual and string theory microstate counting predicts a non-zero

entropy equal to S = πρ2/G. The discontinuous extremal limit may shed some light on

this apparent discrepancy, as we now discuss.

Before proceeding, it is instructive to review the argument given by [12] for the

vanishing entropy of extremal black holes. The semi-classical calculation seeks to evaluate

the gravitational path integral in the saddle point approximation around Euclideanized

black hole geometries [11]. Euclideanizing a non-extremal black hole by sending tE = it in

eq. 2.2 where r > r+ yields a manifold with topology R2×S2. The coordinates {r, tE} form

a set of polar coordinates on the R2 factor with the origin at r+, and the periodicity β of

the angle tE set by imposing regularity (the absence of a conical singularity) at the origin.

Regions of the Lorentzian manifold with r < r+ are not part of the Euclidean solution. For

an extremal black hole, since r+ is infinitely far away from any point outside the horizon,

this point is removed from the Euclidean manifold. The topology of the Euclidean extremal

black hole is therefore R×S1 ×S2. Because the origin is removed, there will be no conical

singularity for any choice of periodicity of the Euclidean time.

The entropy is related to the Euclidean action by

S =

(

β
d

dβ
− 1

)

IE. (5.1)

The Euclidean action for the non-extremal black hole receives “boundary” contributions

from the vicinity of the origin (recall that there is the S2 factor, which does not degenerate

at the origin since r = r+ here) that are independent of β, and contributions from the

canonical action (the Euclideanized version of eq. 2.1) that are proportional to β [12, 13].

The latter gives no contribution to the entropy and the former yields the Bekenstein-

Hawking entropy S = A/4G. For the extremal black hole, because the origin is not part

of the manifold (or, equivalently, because the periodicity of the the Euclidean time is not

fixed), the contribution from the vicinity of the origin vanishes and the calculation indicates

that the entropy of an extremal black hole is zero.

We suggest that a possible resolution to the discrepancy between semiclassical methods

and dual microstate counting is that the entropy of an extremal black hole does indeed

vanish (agreeing with the semiclassical calculation), but the entropy of the corresponding

compactification solution does not. That is, the dual microstate calculations describe the

AdS2 ×S2 region, not the extremal black hole, whereas the semiclassical methods describe

the extremal black hole, but not the compactification solution.

How plausible is this picture? One of the most robust methods of microstate counting,

which is independent of the details of the underlying theory of quantum gravity, is the

dual microstate counting of Strominger [20, 38]. The original calculation was applied to

3 dimensional BTZ black holes [38], but has subsequently been applied to Kerr-Newmann
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(charged, spinning) black holes in arbitrary dimensions [21–23]. The basic idea in each

case is to exploit the fact that the isometries of the near horizon geometry in each of these

extremal cases is SL(2, R)×U(1) to define a CFT on AdS2. Key to these discussions were

the asymptotic symmetries of global AdS2, which all metric perturbations were required

to respect, and the existence of a U(1) (empty AdS2 does not have the same properties).

Cardy’s formula [39] for the asymptotic growth of states in a CFT is then applied to obtain

the entropy.

This entropy is obtained from a calculation in global AdS2, which has different bound-

ary conditions than the original black hole, even though the extremal black hole locally

approximates AdS2 × S2 at the horizon. From this perspective, it is clear that the state

counting is done not for the original black hole, but from a dual holographic perspective in

the near-horizon region. For this reason, we refer to these calculations as dual microstate

counting. Because the entropy calculation applies to the global AdS2 × S2 and not to the

original black hole solution, it is not in obvious conflict with the semiclassical result that

extremal black holes have vanishing entropy.

AdS2 is special because it possesses two disconnected, timelike boundaries. An inter-

esting proposed alternative explanation for the entropy of AdS2 × S2 is that it arises as

entanglement entropy (see [40–42] for further discussion of entanglement entropy in this

context) between the degrees of freedom in region I and I’ of the AdS2 × S2 [43] in fig-

ure 1. For a nearly extremal black hole, the entanglement entropy arises from correlations

in the very near vicinity of the event horizon [44, 45]. It is precisely this region that be-

comes part of the compactification solution in the extremal limit, lending further support

to the idea that the entropy in the extremal case is carried by the AdS2 × S2 rather than

by the extremal black hole. This also supports our suggested alternative non-holographic

interpretation of the entropy arising from the bulk degrees of freedom of the AdS2.

In summary, we propose that the entropy of extremal black holes might vanish whereas

the entropy of AdS2×S2 does not. The entropy of the AdS2×S2 compactification solution

does not vanish, as can be seen from the extremal microstate counting and entanglement

entropy calculations. Further, the entropy is what one would obtain by a naive application

of the Bekenstein-Hawking formula to an extremal black hole. This suggests that the

semiclassical and dual microstate counting pictures could both be correct, as they are

computing the entropy of two different spacetimes. It also suggests a non-holographic

interpretation of the extremal entropy, which is carried by the compactification solution

and associated with its bulk degrees of freedom.

This picture, while satisfying, leaves a few interesting puzzles. We have had little to say

about string theory microstate counting, which predicts a non-zero entropy for extremal

black holes equal to the Bekenstein-Hawking entropy S = A/4G. This is seemingly in

tension with our proposal. However, since there are two distinct classical geometries for

the same set of charges, there may exist some subtleties in passing from the regime of

weak gravitational coupling, where the system is a set of D-branes, to strong gravitational

coupling, where the system is a solution to Einstein-Maxwell theory. We leave further

discussion of this point to future work. In addition, it would be interesting to construct a

clear physical picture of the fate of the region between the inner and outer event horizons

– 13 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
9

when classically attempting to assemble or destroy an extremal black hole. In both cases,

the geometrical properties of the extremal limit may play an important role.

It can be argued that the extremal black hole geometry is not very physical. Quantum

corrections to Einstein gravity will change the properties of the solutions, perhaps in a

way that leads to a non-zero value for the entropy even from the standpoint of the semi-

classical calculation (as suggested by ref. [18]). The implications of our proposal for this

picture are unclear, but nevertheless our results can be viewed as a formal explanation

of the discrepancy between various calculations for the entropy of an idealized extremal

black hole.
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